Fourier-transforming with quantum annealers

نویسنده

  • Itay Hen
چکیده

*Correspondence: Itay Hen, Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, USA e-mail: [email protected] We introduce a set of quantum adiabatic evolutions that we argue may be used as “building blocks,” or subroutines, in the construction of an adiabatic algorithm that executes Quantum Fourier Transform (QFT) with the same complexity and resources as its gate-model counterpart. One implication of the above construction is the theoretical feasibility of implementing Shor’s algorithm for integer factorization in an optimal manner, and any other algorithm that makes use of QFT, on quantum annealing devices. We discuss the possible advantages, as well as the limitations, of the proposed approach as well as its relation to traditional adiabatic quantum computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Integer-to-Binary Mapping for Quantum Annealers

Recent advancements in quantum annealing hardware and numerous studies in this area suggests that quantum annealers have the potential to be effective in solving unconstrained binary quadratic programming problems. Naturally, one may desire to expand the application domain of these machines to problems with general discrete variables. In this paper, we explore the possibility of employing quant...

متن کامل

Recent developments in quantum annealing

We review and comment on some of the recent developments in quantum annealing. In particular, we will comment on recent findings that quantum annealers may be best suited for finding a class of approximate solutions and on Google’s announcement of quantum annealers outperforming classical annealers by significant margins. This is not meant to be a comprehensive review and we apologize in advanc...

متن کامل

Unraveling Quantum Annealers using Classical Hardness

Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these ...

متن کامل

Determination and correction of persistent biases in quantum annealers

Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine an...

متن کامل

Efficiency of quantum vs. classical annealing in nonconvex learning problems

Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014